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The rewarding value of a stimulus is not fixed but rather is subjective and can vary with motivational
state. M. J. Morris, E. S. Na, A. J. Grippo, and A. K. Johnson (2006) report that generating a prolonged
sodium appetite decreases the rewarding value of lateral hypothalamic brain stimulation and sucrose
intake. The findings support the idea that a specific motivational state can have strong, nonspecific
consequences for reward processing.
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Understanding the biology of how motivated state influences
behavior has long been a topic of intense investigation, and
progress on this front promises to advance the treatment of mood
disorders, obesity, and drug addiction. Morris, Na, Grippo, and
Johnson (2006) use a decades-old tool to ask a very novel and
important question. That is, how do persistent perturbations in
hormonal signaling affect reward processing? In 1954, Olds and
Milner found that rats would press a lever to deliver current to
particular regions of their brains—a phenomenon known as intra-
cranial self-stimulation (ICSS). Morris et al. use this behavior to
determine how frequently a rat will press a lever for different
current intensities of stimulation, which indicates its subjective
reward value. The resulting psychometric function is then com-
pared with one generated following a change in motivated state. A
shift in this curve indicates a change in the relative rewarding
value of the stimulation. Morris et al. determined that a persistent
increase in the desire to consume sodium, termed a sodium appe-
tite, pushed psychometric curves to the right. That is, rats re-
sponded less for the same current intensity after days of an induced
sodium appetite than before it or compared with rats receiving the
treatment with the opportunity to consume sodium through intake.
The data strongly suggest that a persistent sodium appetite results
in a decrease in the rewarding value of stimuli that fail to satisfy
the appetite—a conclusion supported by further experiments in
their report that found sodium-depleted rats consumed less of a
rewarding sucrose solution compared with controls.

Morris et al. (2006) placed stimulating electrodes in the lateral
hypothalamus where they would activate dopaminergic fibers and
cause the release of dopamine in the nucleus accumbens (Cheer et
al., 2006; You, Chen, & Wise, 2001), which is believed to support
the reinforcing properties of ICSS. Limbic circuitry and in partic-
ular the dopaminergic fibers of the ventral tegmental area and the
nucleus accumbens appear to be substrates for the interaction of

sensory information with motivated state in the service of behav-
ior. For example, several lines of research implicate accumbens
dopamine signaling in the regulation of food intake. Food-
predictive cues evoke an increase in dopamine within hundreds of
milliseconds that peaks at the moment of the behavioral response
to procure the food (Roitman, Stuber, Phillips, Wightman, &
Carelli, 2004). Dopamine in the nucleus accumbens appears to be
necessary and sufficient for rats to respond to food-predictive cues
(Nicola, Taha, Kim, & Fields, 2005). Food deprivation increases
dopamine release to the same food stimulus (Wilson, Nomikos,
Collu, & Fibiger, 1995). Individual neurons within the nucleus
accumbens exhibit changes in firing rate in response to food
rewards, with the majority of food responses being inhibitions
(Nicola, Yun, Wakabayashi, & Fields, 2004; Roitman, Wheeler, &
Carelli, 2005; Taha & Fields, 2006). It is important to note that
inhibiting the nucleus accumbens with either GABA agonists or
glutamate antagonists can initiate robust feeding behavior even in
sated rats (Kelley, 2004). This latter finding strongly suggests that
motivational systems, when engaged, have the ability to initiate
behavior even while homeostatic signals should prevent it
(Berthoud, 2004; Kelley, Baldo, & Pratt, 2005).

For an animal to survive, it needs more than just food. It needs
to maintain body fluid balance. Deviations from positive sodium
balance can strongly engage motivational systems for sodium
seeking. Acute sodium depletion changes rats’ behavioral re-
sponses to concentrated sodium solutions. Under conditions of
positive sodium balance, the taste of concentrated sodium solu-
tions evokes orofacial responses similar to those of quinine or
aversive taste stimuli. However, acute sodium depletion so dra-
matically alters behavior that orofacial responses to the very same
sodium solutions are more like the responses observed to sucrose
or rewarding taste stimuli (Berridge, Flynn, Schulkin, & Grill,
1984). Shizgal and colleagues (Conover, Woodside, & Shizgal,
1994) used a similar approach as Morris et al. (2006). They
showed that acute sodium depletion did not cause curve shifts in
responding for ICSS, suggesting that the rewarding value of the
stimulation was unchanged following depletion. However, deple-
tion did cause increased competition between responding for ICSS
and responding for sodium (Conover, Woodside, & Shizgal,
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1994). The data suggest that the rewarding values of brain stimu-
lation and sodium, under deplete conditions, were processed by
similar, if not the same, neural substrates. Could dopamine and the
nucleus accumbens contribute to the rewarding aspects of sodium
for the sodium-depleted rat? Dopamine antagonists reduce the
consumption of sodium solutions in the sodium-depleted rat (Roit-
man, Schafe, Thiele, & Bernstein, 1997). Sodium depletion and
induction of a sodium appetite also alter dopamine and other
signaling in the nucleus accumbens (Lucas, Grillo, & McEwen,
2003; Lucas, Pompei, Ono, & McEwen, 1998; Roitman, Patterson,
Sakai, Bernstein, & Figlewicz, 1999). The nucleus accumbens,
therefore, is a locus for depletion to exert its effects on sodium-
seeking behavior.

Acute sodium depletion can have lasting effects on behavior.
Rats, having been sodium depleted once before, consume signifi-
cantly more of a concentrated sodium solution on subsequent
depletions (Sakai, Fine, Epstein, & Frankmann, 1987) and under
need-free conditions (Sakai, Frankmann, Fine, & Epstein, 1989).
These effects mirror drug sensitization, whereby prior exposure to
psychostimulants such as cocaine increases subsequent locomotor
behavior evoked by a drug challenge. The nucleus accumbens and
dopamine signaling are critical for drug sensitization (Berridge &
Robinson, 1998; Robinson & Berridge, 2001). Sensitization to one
stimulus can increase behavior evoked by another—a phenomenon
called cross-sensitization. Could depletion episodes, which sensi-
tize sodium-seeking behavior, lead to cross-sensitization with
drugs of abuse? Indeed, they do, as evidenced by rats with a
history of acute sodium depletion exhibiting increased behavioral
activation from their first injection of amphetamine relative to rats
with no history of depletion (Clark & Bernstein, 2004; Roitman,
Na, Anderson, Jones, & Bernstein, 2002). In addition, a regimen of
amphetamine injections that would lead to sensitization also sen-
sitized sodium consumption following a single acute depletion
relative to depleted rats with no history of amphetamine treatment
(Clark & Bernstein, 2004). Multiple, acute depletions lead to
structural changes in nucleus accumbens medium spiny neurons
(Roitman et al., 2002) that are similar to the structural changes
observed after a sensitizing regimen of amphetamine (Robinson &
Kolb, 1997) or cocaine (Robinson & Kolb, 1999a) or after a period
of cocaine self-administration (Robinson, Gorny, Mitton, & Kolb,
2001). Food restriction and deprivation also alter drug-mediated
and drug-directed behavior (Cabib, Orsini, Le Moal, & Piazza,
2000). Important for this discussion, food restriction enhances the
relative rewarding value of ICSS (Fulton, Woodside, & Shizgal,
2000). Together, the data suggest that deprivation states can have
profound effects on reward-seeking behavior that generalize from
the stimuli that satisfy the specific need to other rewarding agents.

Although deprivation states, including acute sodium depletion,
seem to enhance the rewarding aspects of the stimulus that meets
the need of the animal as well as stimuli that do not (e.g., ICSS and
drugs of abuse; Carr, 2002), the work of Morris et al. (2006)
investigates a chronic need state generated by prolonged exposure
to a hormone agonist. The authors generated a persistent sodium
appetite by chronic administration of a mineralocorticoid agonist
(deoxycorticosterone acetate; DOCA). They showed that, if given
the opportunity to ingest concentrated sodium solutions following
these injections, rats avidly do so. The striking finding of Morris et
al. is that generating a sodium appetite without the opportunity to

satisfy it for several days caused a rightward shift in the current–
response function for ICSS of the lateral hypothalamus relative to
pretreatment. This shift did not occur in saline-injected controls.
More important, though, in rats that were given the exact same
regimen of DOCA treatment but also permitted to consume a
sodium solution, no shift was observed (see Figure 2 in Morris et
al., 2006). The results demonstrate that the persistent or chronic
sodium appetite caused by elevated steroid signaling can strongly
influence reward processing by decreasing it. The effects of
DOCA treatment were not limited to current–response functions.
DOCA treatment over several days also suppressed sucrose con-
sumption but only in rats that did not have the opportunity to
consume a sodium solution over the treatment period. Thus,
DOCA treatment altered the relative value of multiple rewards.
Notably, if given the opportunity to consume a sodium solution
following a period of DOCA treatment without access to sodium,
rats still avidly ingested (see Figure 4 in Morris et al., 2006). Thus,
although the rewarding value of stimuli that did not meet the
perceived need diminished, the relative rewarding value of sodium
remained intact. This likely reflects the interaction of multiple
motivational systems: the dopamine–nucleus accumbens pathway
being just one of them. For example, the circumventricular organs
and even the amygdala are also important for thirst, sodium appe-
tite, and body fluid homeostasis, and perhaps these other regions
were sufficient to provide the neural signals required to overcome
the decreased reward seeking due to effects of DOCA on the
nucleus accumbens and dopamine signaling there. Understanding
how sodium appetite is preserved in the face of decreased reward
seeking remains a challenge for Morris et al. to address.

Several interesting questions remain. Shizgal and colleagues
(Fulton et al., 2000) found that chronic food restriction caused
leftward curve shifts in rate–frequency functions for ICSS but only
at a subset of electrode placements. It is interesting that the
hormone leptin, which induces reduced food intake and body
weight, caused rightward curve shifts—but only at stimulation
sites where food restriction was effective in inducing a leftward
curve shift (Fulton et al., 2000). This study potentially mirrors the
effects of sodium need. Acute sodium depletion was insufficient to
alter responding for ICSS (Conover et al., 1994). As Morris et al.
(2006) have shown, a chronic motivation for sodium is indeed
effective in altering responding—pushing ICSS curves to the right.
Moreover, both feeding and sodium consumption led to a return to
baseline responding. It would be very interesting to determine
whether food-restriction, and therefore leptin, sensitive sites in the
lateral hypothalamus were also DOCA sensitive. That is, is there a
subset of neurons activated by ICSS that are particularly sensitive
to changes in a variety of motivational states?

Another potentially interesting intersection with the literature
concerns structural changes within the nucleus accumbens. As
mentioned above, both acute sodium depletion (Roitman et al.,
2002) and psychostimulant administration (cocaine and amphet-
amine; Robinson & Kolb, 1999a) lead to increased dendritic ar-
borization and spine density of medium spiny nucleus accumbens
neurons. Repeated exposure to another abused drug, morphine,
leads to opposite changes—medium spiny neurons exhibit de-
creased dendritic branching and spine density relative to controls
(Robinson & Kolb, 1999b). It is interesting that during both
morphine and nicotine withdrawal, thresholds for ICSS increased.
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Rats required more current to engage in self-stimulation during
withdrawal (Kenny & Markou, 2005; Schulteis, Markou, Gold,
Stinus, & Koob, 1994), and thus the relative rewarding value of
ICSS decreased. Given that chronic DOCA treatment also shifts
relative reward, perhaps it would alter dendritic morphology in the
nucleus accumbens in a manner more similar to morphine-treated
than amphetamine-treated or acutely sodium-depleted rats.

Considerable work has focused on the role of glucocorticoids in
reward, drug taking, and addiction. Investigation of the effects of
mineralocorticoids, the other class of adrenal steroids, on reward
has lagged behind. Morris et al. (2006) point out that human mood
disorders can be linked to sodium dysregulation. Their study
shows that a persistent sodium appetite generated by enhanced
mineralocorticoid signaling decreases reward efficacy in rats. Lu-
cas, Pompei, and McEwen (2000) have identified peptidergic
changes in the nucleus accumbens that track the decrease in reward
efficacy demonstrated by Morris et al. Further studies addressing
the neurophysiological, neurochemical, and cellular changes asso-
ciated with this effect, as well as the inclusion of associated brain
regions such as the amygdala and the subdivisions of the prefrontal
cortex, will undoubtedly shed considerable light on the etiology of
mood disorders, drug addiction, and relapse.
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